## вuLロ． $3 S_{\text {の活用方法－zos－}}$

## ビーム要素の配置について（1）

3 Sは，任意形状立体解析という名前からもわかるように，節点があ る限り，板村やトラス村を配置する事ができます。ところが，ビーム要素だけは，その節点だけでは3次元の空間に配置することができま せん。なぜならば，線村における主軸の向きを決める必要があるから です。


上のようなモデルの柱を配置するとき，どのように入力すればよいの でしょうか？
「k点を指定する方法」とは，主軸を決定することであり，すなわち要素座標のy軸を決定することです（次ページの図参照）。
ここで要素座標とは，名前の通り「要素」に基づいてつくられる座標 であり，全て小文字のアルファベットで表します。

これは大文字のアルファベットで表される全体座標とは違い（前ページ の全体図参照），配置されている全ての要素ごとにつくられる座標です。下図で説明すると，要素座標の $\times$ 軸は i 節点を原点とし， j 節点の方向（材軸方向）に延びた軸になります。また y 軸は i 節点を原点とし， $i$ ，$j$ ，k 節点で構成される平面およびその延長平面上で $x$ 軸と直交 する軸になります。そして，$z$ 軸は i 節点を原点とし， x y 面に直交 するように延びた軸になります。
それぞれの軸の正負は，右手座標系から決まり，親指が $\times$ 軸の正方向，人差し指が y 軸の正方向，中指が $z$ 軸の正方向を指し示します。
この「要素座標」は，ビーム要素が配置される際の i ，j 節点によっ て必ずつくられる重要な概念で，断面性能，部材荷重等の入力の際に も意識しなければなりません。


これによって，各柱材の要素座標における $x-y$ 平面がすべて平面上の中心に向くようなビーム要素配置が可能となり，応力値の確認の ときに，$x-y$ 面と $x-z$ 面のどちらを見るべきか迷わずに済みます。今回の例では，「k点」の設定に，材が何も取り付かない節点を設けま したので，「 k 点」の固定節点（拘東条件）は 6 自由度全て＂固定＂に します。
次回は，引き続いて『コードアングルを指定する方法』についてお話します。

